91书包网 > 离语 > 第339章 哇凉

第339章 哇凉


向量知识库构建是一个将处理过的数据嵌入向量知识库的过程,主要用于将不同类型的数据转

化为向量,并进行存储和检索。其流程如图  4.1  所示。

图  4.1  向量知识库构建流程

对收集到的数据进行清洗、去重、分类,提取分割文本,以确保数据的质量和有效性。消除噪

声数据,提高数据的一致性和准确性。将预处理后的数据转化为向量,将向量化后的数据存储到向

量知识库中,并利用向量数据库进行高效的存储和检索。向量数据库是一种专门用于存储和检索向

量数据的数据库系统,可以根据语义或上下文含义查找最相似或相关的数据。

测试流程包括以下几个步骤:

测试设计:根据目标领域定义测试用例,包括典型问题、边缘情况和错误输入。

环境搭建:搭建测试环境,包括聊天界面和后端模型处理系统。

执行测试:记录模型的回应。

评估结果:根据预设的标准(如准确性、响应时间、用户满意度)评估模型表现。

优化模型:根据测试结果对模型进行调整和优化。

5.2  智能交互组件  Chatbot

Chatbot  是一种人工智能程序,它设计用于模拟人类对话,并且能够基于事先编程或机器学习

技术来进行智能对话交流。Chatbot  通常被用于客户服务、信息查询、娱乐等各种场景,可以通过

文本或语音与用户进行交互。

Chatbot  的一些特点和作用包括:

①自动化交互:Chatbot  可以自动回答用户提出的问题,执行指定的任务,无需人工干,减少

人力成本和时间消耗。

②实时响应:Chatbot  能够在任何时间、任何地点提供服务,随时响应用户的问题和需求。

③个性化服务:Chatbot  可以根据用户的需求和历史数据提供个性化的服务和建议,提高用户

体验。

④多渠道支持:Chatbot  可以在多种通信渠道上运行,如网页、应用程序、社交媒体平台等,

为用户提供多样化的对话途径。

本项目选择  OpenAI  的  GPT  模型作为  Chatbot  的大语言模型基座,GPT  模型基于  Transformer

架构,相较于其他模型,这种架构允许模型在处理长文本时保持较好的性能,同时具有良好的并行

化能力,使得模型的训练和推理速度得到提升。

5.2.1  Chatbot  后端

基于先前构建的针对电力  LCA  领域的向量知识库构建  Chatbot  测试模型性能,主要设计思路是

为了实现检索功能,大致可分为知识库检索功能和在线搜索。

Chatbot  功能流程图如图  5.1  所示。

用户通过  Chatbot  界面输入他们的问题或请求。对用户输入文本进行清洗,包括去除标点符

号,进行分词等。转化为结构化数据后将预处理后的文本转换为向量形式,以便于机器理解。将向

量化处理后的用户问题构建成搜索向量。使用搜索向量与知识库中已向量化的内容进行匹配,找出

相关的信息。对匹配到的知识库内容进行排序,选择最相关的几个回答候选。为保证性能设置最相


  (https://www.91book.net/book/37232/43863.html)


1秒记住91书包网:www.91book.net。手机版阅读网址:m.91book.net